Abstract
Can Large Language Models substitute humans in making important decisions? Recent research has unveiled the potential of LLMs to role-play assigned personas, mimicking their knowledge and linguistic habits. However, imitative decision-making requires a more nuanced understanding of personas. In this paper, we benchmark the ability of LLMs in persona-driven decision-making. Specifically, we investigate whether LLMs can predict characters’ decisions provided with the preceding stories in high-quality novels. Leveraging character analyses written by literary experts, we construct a dataset LIFECHOICE comprising 1,401 character decision points from 395 books. Then, we conduct comprehensive experiments on LIFECHOICE, with various LLMs and methods for LLM role-playing. The results demonstrate that state-of-the-art LLMs exhibit promising capabilities in this task, yet there is substantial room for improvement.
Type
Publication
arXiv e-prints
大型语言模型能否替代人类做出重要决策?最近的研究揭示了LLMs扮演指定角色的潜力,模仿他们的知识和语言习惯。然而,模仿性决策需要对角色有更细微的理解。
在本文中,我们对LLMs在角色驱动决策方面的能力进行了基准测试。具体来说,我们研究了LLMs是否能够在提供高质量小说中的前序故事的情况下预测角色的决策。利用文学专家撰写的角色分析,我们构建了一个数据集LIFECHOICE,包含395本书中1,401个角色决策点。
然后,我们在LIFECHOICE上进行了全面的实验,使用各种LLMs和LLM角色扮演方法。结果表明,最先进的LLMs在这项任务中表现出有希望的能力,但仍有很大的改进空间。
这项研究有助于我们理解LLMs在模拟人类决策过程方面的能力和局限性,为未来的研究提供了重要的基准和方向。